Kamis, 01 November 2012

1.1. INTRODUCTION TO SEQUENCING AND SCHEDULING

1. INTRODUCTION
1.1. INTRODUCTION TO SEQUENCING AND SCHEDULING
Scheduling is a term in our everyday vocabulary, although we may not always have a good definition of the term in mind. Actually, it’s not scheduling that is a common concept in our everyday life, rather it is schedules. A schedule is a tangible plan or document, such as a bus schedule or a class schedule. A schedule usually tells us when things are supposed to happen; it shows us a plan for the timing of certain activities and answers the question, “If all goes well, when will a particular event take place?” Suppose we are interested in when dinner will be served or when a bus will depart. In these instances, the event we are interested in is the completion of a particular activity, such as preparing dinner, or the start of a particular activity such as a bus trip. Answers to the “when” question usually come to us with information about timing. Dinner is scheduled to be served at 6:00 pm, the bus is scheduled to depart at 8:00 am, and so on. However, an equally useful answer might be in terms of sequence rather than timing: that is, dinner will be served as soon as the main course is baked, or the bus will depart right after cleaning and maintenance are finished. Thus, the “when” question can be answered by timing or by sequence information obtained from the schedule.
If we take into account that some events are unpredictable, then changes may occur in a schedule. Even then, the schedule is useful: by letting passengers know when the bus is due to leave, we help them plan their own schedules. Thus, we may say that thebus leaves at 8:00 am unless it is delayed for cleaning and maintenance, or we may leave the condition implicit and just say that the bus is scheduled to leave at 8:00 am. If we make allowances for uncertainty when we schedule cleaning and maintenance, then passengers can trust that the bus will leave at 8:00 am with some confidence. In turn, they may schedule their own time buffer when planning their arrival at the station. Using a time buffer (or safety time) helps us cope with uncertainty.
Intuitively, we think of scheduling as the process of generating the schedule, although we seldom stop to consider what the details of that process might be. In fact, although we think of a schedule as something tangible, the process of scheduling seems quite intangible, until we consider it in some depth. We often approach the problem in two steps: sequencing and scheduling. In the first step, we plan a sequence or decide how to select the next task. In the second step, we plan the start time, and perhaps the completion time, of each task. The determination of safety time is part of the second step.
Preparing a dinner or doing the laundry are good examples of everyday scheduling problems. They involve tasks to be carried out, the tasks are well specified, and particular resources are required—a cook and an oven for dinner preparation, a washer and a dryer for laundry. Scheduling problems in industry have a similar
structure: they contain a set of tasks to be carried out and a set of resources available to perform those tasks. Given tasks and resources, together with some information about uncertainties, the general problem is to determine the timing of the tasks while recognizing the capability of the resources. This problem usually arises within a decision-making hierarchy in which scheduling follows some earlier, more basic decisions. Dinner preparation, for example, typically requires a specification of the menu items, recipes for those items, and information on how many portions will be needed. In industry, analogous decisions are usually said to be part of the planning function. Among other things, the planning function might describe the design of a company’s products, the technology available for making and testing the required parts, and the volumes to be produced. In short, the planning function determines the resources available for production and the tasks to be scheduled.
In the scheduling process, we need to know the type and the amount of each resource so that we can determine when the tasks can feasibly be accomplished. When we specify the resources, we effectively define the boundary of the scheduling problem. In addition, we describe each task in terms of such information as its resource requirement, its duration, the earliest time at which it may start, and the time at which it is due to complete. In general, the task duration is uncertain, but we may want to suppress that uncertainty when stating the problem. We should also describe any technological constraints (precedence restrictions) that exist among the tasks. Information about resources and tasks defines a scheduling problem. However, finding a solution is often a fairly complex matter, and formal problem-solving approaches are helpful.


Formal models help us first to understand the scheduling problem and then to find a good solution. For example, one of the simplest and most widely used models is the Gantt chart, which is an analog representation of a schedule. In its basic form, the Gantt chart displays resource allocation over time, with specific resources shownalong the vertical axis and a time scale shown along the horizontal axis. The basic Gantt chart assumes that processing times are known with certainty, as in Figure 1.1.
A chart such as Figure 1.1 helps us to visualize a schedule and its detailed elements because resources and tasks show up clearly. With a Gantt chart, we can discover information about a given schedule by analyzing geometric relationships. In addition, we can rearrange tasks on the chart to obtain comparative information about alternative schedules. In this way, the Gantt chart serves as an aid for measuring performance and comparing schedules as well as for visualizing the problem in the first place. In this book, we will examine graphical, algebraic, spreadsheet, and simulation models, in addition to the Gantt chart, all of which help us analyze and compare schedules. In essence, models help us formalize the otherwise intangible process we call scheduling.
Many of the early developments in the field of scheduling were motivated by problems arising in manufacturing. Therefore, it was natural to employ the vocabulary of manufacturing when describing scheduling problems. Now, although scheduling work is of considerable significance in many nonmanufacturing areas, the terminology of manufacturing is still frequently used. Thus, resources are usually called machines and tasks are called jobs. Sometimes, jobs may consist of several elementary tasks called operations. The environment of the scheduling problem is called the job shop, or simply, the shop. For example, if we encountered a scheduling problem faced by underwriters processing insurance policies, we could describe the situation generically as an insurance “shop” that involves the processing of policy “jobs” by underwriter “machines.”

0 Komentar:

Posting Komentar

Berlangganan Posting Komentar [Atom]

<< Beranda